Problem 2.18

An infinite plane slab, of thickness $2 d$, carries a uniform volume charge density ρ (Fig. 2.27). Find the electric field, as a function of y, where $y=0$ at the center. Plot E versus y, calling E positive when \mathbf{E} points in the $+y$ direction and negative when it points in the $-y$ direction.

Fig. 2.27

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Normally the curl of \mathbf{E} is also necessary to determine \mathbf{E}, but because of the symmetry about the $x z$-plane, the divergence is sufficient. In addition, the electric field is assumed to only depend on y and be along the y-axis: $\mathbf{E}=E(y) \hat{\mathbf{y}}$. There's as much charge to the right of the $x z$-plane as there is on the left, so the electric field at $y=0$ is zero. Integrate both sides over the volume of a (black) rectangular Gaussian surface with length L, width y, and height H. Two cases need to be considered: (i) the case where $0<y<d$ and (ii) the case where $y>d$.

$0<y<d$

$$
y>d
$$

The enclosed charge is the product of the charge density with the volume.

$$
\int_{0}^{H} \int_{0}^{y} \int_{0}^{L} \nabla \cdot \mathbf{E}\left(d x_{0} d y_{0} d z_{0}\right)= \begin{cases}\int_{0}^{H} \int_{0}^{y} \int_{0}^{L} \frac{\rho}{\epsilon_{0}}\left(d x_{0} d y_{0} d z_{0}\right) & \text { if } 0<y<d \\ \int_{0}^{H} \int_{0}^{d} \int_{0}^{L} \frac{\rho}{\epsilon_{0}}\left(d x_{0} d y_{0} d z_{0}\right) & \text { if } y>d\end{cases}
$$

Apply the divergence theorem on the left side.

$$
\oiint \mathbf{E} \cdot d \mathbf{S}_{0}= \begin{cases}\frac{\rho}{\epsilon_{0}}\left(\int_{0}^{H} d z_{0}\right)\left(\int_{0}^{y} d y_{0}\right)\left(\int_{0}^{L} d x_{0}\right) & \text { if } 0<y<d \\ \frac{\rho}{\epsilon_{0}}\left(\int_{0}^{H} d z_{0}\right)\left(\int_{0}^{d} d y_{0}\right)\left(\int_{0}^{L} d x_{0}\right) & \text { if } y>d\end{cases}
$$

Because the electric field only depends on y, the surface integral only needs to be calculated on two faces of the box.

$$
\left.\int_{0}^{H} \int_{0}^{L}\left[E\left(y_{0}\right) \hat{\mathbf{y}}_{0} \cdot\left(\hat{\mathbf{y}}_{0} d x_{0} d z_{0}\right)\right]\right|_{y_{0}=0}+\left.\int_{0}^{H} \int_{0}^{L}\left[E\left(y_{0}\right) \hat{\mathbf{y}}_{0} \cdot\left(\hat{\mathbf{y}}_{0} d x_{0} d z_{0}\right)\right]\right|_{y_{0}=y}= \begin{cases}\frac{\rho}{\epsilon_{0}}(H L y) & \text { if } 0<y<d \\ \frac{\rho}{\epsilon_{0}}(H L d) & \text { if } y>d\end{cases}
$$

Evaluate the dot products.

$$
\int_{0}^{H} \int_{0}^{L} E(0) d x_{0} d z_{0}+\int_{0}^{H} \int_{0}^{L} E(y) d x_{0} d z_{0}= \begin{cases}\frac{\rho}{\epsilon_{0}}(H L y) & \text { if } 0<y<d \\ \frac{\rho}{\epsilon_{0}}(H L d) & \text { if } y>d\end{cases}
$$

The electric field is zero on the $y=0$ face, and the electric field is constant on the $y_{0}=y$ face.

$$
\int_{0}^{H} \int_{0}^{L}(0) d x_{0} d z_{0}+E(y) \int_{0}^{H} \int_{0}^{L} d x_{0} d z_{0}= \begin{cases}\frac{\rho}{\epsilon_{0}}(H L y) & \text { if } 0<y<d \\ \frac{\rho}{\epsilon_{0}}(H L d) & \text { if } y>d\end{cases}
$$

Evaluate the integrals.

$$
E(y)(H L)= \begin{cases}\frac{\rho}{\epsilon_{0}}(H L y) & \text { if } 0<y<d \\ \frac{\rho}{\epsilon_{0}}(H L d) & \text { if } y>d\end{cases}
$$

Divide both sides by $H L$ to solve for $E(y)$.

$$
E(y)= \begin{cases}\frac{\rho}{\epsilon_{0}} y & \text { if } 0<y<d \\ \frac{\rho}{\epsilon_{0}} d & \text { if } y>d\end{cases}
$$

Due to the symmetry about the $y=0$ plane and the fact that the electric field is negative for $y<0$, take the odd extension of $E(y)$ to get the electric field for $-\infty<y<\infty$.

$$
E(y)= \begin{cases}-\frac{\rho}{\epsilon_{0}} d & \text { if } y<-d \\ \frac{\rho}{\epsilon_{0}} y & \text { if }-d<y<d \\ \frac{\rho}{\epsilon_{0}} d & \text { if } y>d\end{cases}
$$

Therefore,

$$
\mathbf{E}(y)= \begin{cases}-\frac{\rho}{\epsilon_{0}} d \hat{\mathbf{y}} & \text { if } y<-d \\ \frac{\rho}{\epsilon_{0}} y \hat{\mathbf{y}} & \text { if }-d<y<d . \\ \frac{\rho}{\epsilon_{0}} d \hat{\mathbf{y}} & \text { if } y>d\end{cases}
$$

Below is a plot of $E(y)$ versus y.

